博客
关于我
mongo笔记07( MongoDB 关系)
阅读量:498 次
发布时间:2019-03-07

本文共 1299 字,大约阅读时间需要 4 分钟。

<\?php

/**
* MongoDB 关系
*/

/**

* MongoDB 的关系表示多个文档之间在逻辑上的相互联系。
* 文档间可以通过嵌入和引用来建立联系。



  • MongoDB 中的关系可以是:
  • 1:1 (1对1)
  • 1: N (1对多)
  • N: 1 (多对1)
  • N: N (多对多)
    */

/**

* 实例
*/

/**

* 接下来我们来考虑下用户与用户地址的关系。
* 一个用户可以有多个地址,所以是一对多的关系。
* 以下是 user 文档的简单结构:



  • {
  • “_id”:ObjectId(“52ffc33cd85242f436000001”),
  • “name”: “Tom Hanks”,
  • “contact”: “987654321”,
  • “dob”: “01-01-1991”
  • }


  • 以下是 address 文档的简单结构:
  • {
  • “_id”:ObjectId(“52ffc4a5d85242602e000000”),
  • “building”: “22 A, Indiana Apt”,
  • “pincode”: 123456,
  • “city”: “Los Angeles”,
  • “state”: “California”
  • }



  • 嵌入式关系
  • 使用嵌入式方法,我们可以把用户地址嵌入到用户的文档中:


  • “_id”:ObjectId(“52ffc33cd85242f436000001”),
  • “contact”: “987654321”,
  • “dob”: “01-01-1991”,
  • “name”: “Tom Benzamin”,
  • “address”: [
  • {
  • “building”: “22 A, Indiana Apt”,
  • “pincode”: 123456,
  • “city”: “Los Angeles”,
  • “state”: “California”
  • },
  • {
  • “building”: “170 A, Acropolis Apt”,
  • “pincode”: 456789,
  • “city”: “Chicago”,
  • “state”: “Illinois”
  • }]
  • }


  • 以上数据保存在单一的文档中,可以比较容易的获取和维护数据。 你可以这样查询用户的地址:
  • >db.users.findOne({“name”:”Tom Benzamin”},{“address”:1})


  • 这种数据结构的缺点是,如果用户和用户地址在不断增加,数据量不断变大,会影响读写性能。



  • 引用式关系
  • 引用式关系是设计数据库时经常用到的方法,这种方法把用户数据文档和用户地址数据文档分开,通过引用文档的 id 字段来建立关系。


  • {
  • “_id”:ObjectId(“52ffc33cd85242f436000001”),
  • “contact”: “987654321”,
  • “dob”: “01-01-1991”,
  • “name”: “Tom Benzamin”,
  • “address_ids”: [
  • ObjectId(“52ffc4a5d85242602e000000”),
  • ObjectId(“52ffc4a5d85242602e000001”)
  • ]
  • }
    */

转载地址:http://jxzjz.baihongyu.com/

你可能感兴趣的文章
Nginx配置后台网关映射路径
查看>>
nginx配置域名和ip同时访问、开放多端口
查看>>
Nginx配置好ssl,但$_SERVER[‘HTTPS‘]取不到值
查看>>
Nginx配置如何一键生成
查看>>
Nginx配置实例-负载均衡实例:平均访问多台服务器
查看>>
Nginx配置文件nginx.conf中文详解(总结)
查看>>
Nginx配置负载均衡到后台网关集群
查看>>
ngrok | 内网穿透,支持 HTTPS、国内访问、静态域名
查看>>
NHibernate学习[1]
查看>>
NHibernate异常:No persister for的解决办法
查看>>
NIFI1.21.0_Mysql到Mysql增量CDC同步中_日期类型_以及null数据同步处理补充---大数据之Nifi工作笔记0057
查看>>
NIFI1.21.0_NIFI和hadoop蹦了_200G集群磁盘又满了_Jps看不到进程了_Unable to write in /tmp. Aborting----大数据之Nifi工作笔记0052
查看>>
NIFI1.21.0通过Postgresql11的CDC逻辑复制槽实现_指定表多表增量同步_增删改数据分发及删除数据实时同步_通过分页解决变更记录过大问题_02----大数据之Nifi工作笔记0054
查看>>
NIFI1.23.2_最新版_性能优化通用_技巧积累_使用NIFI表达式过滤表_随时更新---大数据之Nifi工作笔记0063
查看>>
NIFI从MySql中增量同步数据_通过Mysql的binlog功能_实时同步mysql数据_根据binlog实现数据实时delete同步_实际操作04---大数据之Nifi工作笔记0043
查看>>
NIFI从MySql中增量同步数据_通过Mysql的binlog功能_实时同步mysql数据_配置binlog_使用处理器抓取binlog数据_实际操作01---大数据之Nifi工作笔记0040
查看>>
NIFI从MySql中增量同步数据_通过Mysql的binlog功能_实时同步mysql数据_配置数据路由_实现数据插入数据到目标数据库_实际操作03---大数据之Nifi工作笔记0042
查看>>
NIFI从MySql中离线读取数据再导入到MySql中_03_来吧用NIFI实现_数据分页获取功能---大数据之Nifi工作笔记0038
查看>>
NIFI从MySql中离线读取数据再导入到MySql中_无分页功能_02_转换数据_分割数据_提取JSON数据_替换拼接SQL_添加分页---大数据之Nifi工作笔记0037
查看>>
NIFI从PostGresql中离线读取数据再导入到MySql中_带有数据分页获取功能_不带分页不能用_NIFI资料太少了---大数据之Nifi工作笔记0039
查看>>